Lab 2 Discussion

CSE451 21Sp - 22 Apr 2021

Admin

Lab 2 due next Friday (4/30)

Agenda

| have some discussion questions related to lab 2
e | also have the section 3 slides to refer back to if you need a high-level overview of
anything
o Feel free to yell at me
e Time at the end for open Q&A

Debugging in the Trap

e Youwill likely encounter an error from the trap like the below image during your xk
endeavors
o Do not fear!
e Trap frame contains registers saved before jumping into the kernel
o See kernel/trapasm.S for the mechanism there
e This can be useful!
tf->trapno, “trap number”

o Givesthe “reason” why kernel was invoked
o Seeinc/trap.h for trapno indicators
e Trap frame registers can help give context for why you’re in the kernel
o Ingdb, xtf->rip’ can give program counter that caused fault
o Onapage fault, "addr’ contains address attempted to be accessed
m Loaded from cr2 register

pid 6 : trap 14 err 5 on cpu © rip ©x491 addr ©x80000000--kill proc

Lab 2 - Processes \
IF IN DOUBT: DO WHAT LINUX DOES

fork()

e Create anew process by duplicating the calling process.

e Returns twice!
o 0Ointhe child (newly created) process
o Child’s PID in the parent
e Howdoes fork() “return twice”?
o l.e.when the child process is scheduled for the first time, it returns from the fork system call with a
return value of O
o Thoughts?

wait()/exit()

wait(): Sleep until a child process terminates, then return that child’s PID.
e exit(): Halts program and sets state to have its resources reclaimed

e Why can't aprocess not clear out it’s own proc struct in “exit™?
o Whoisresponsible?

e If aparent process calls “exit’ before its child finishes executing, how does the child
process need to be modified to guarantee that someone will wait for the child?

Process States

Fill out the process state diagram below. Draw arrows from one state to another with the action

that would result in that transition
RUNNING

UNUSED EMBRYO RUNNABLE ZOMBIE

SLEEPING

Process States

Fill out the process state diagram below. Draw arrows from one state to another with the action

that would result in that transition
RUNNING

UNUSED EMBRYO RUNNABLE ZOMBIE

A

SLEEPING

pipe(pipefds)

e Creates a pipe (internal buffer) for reading from/writing to

e From the user perspective: two new files
o One (“read end”) is not writable
o Other (“write end”) is not readable
e You'll want to somehow make this compatible with the read/write(fd) interface

Pipes

pipe

e Managing acircular buffer with read end and write end
Some data

e Ifreading and pipe is empty,

o Reader should wait until some data is available |
e Ifwriting and pipe is full,

o Writer should wait until it has some room to write
e Howdoyou tell if apipe is full/empty?

r_offset w_offset

e Suppose areader of a pipe is sleeping waiting for the writer to write some data
o Ifwriter processis killed before it gets a chance to write data, how does the reader get woken up?
o What should the read call return?

e Openreaders, no writers: return remaining data (if any), then O (EOF)
e Open writers, no readers: return -1

exec(progname, args)

Replaces the process’ state by executing the given program with the given arguments.
This will require you to (carefully!) set up the process’ stack memory and register state.

This will be tricky! You'll be using a number of vspace__ functions
- init, loadcode and initstack may be helpful for initializing a new memory space (in that order)
- use vspacewritetova to export data to a page table that isn’t currently installed
- once the memory space is ready, use vspaceinstall(myproc()); to engage
- and free the old vspace!

e When creating the user stack in xk, what should the stack pointer start at?
o (thiswould be an argument to pass to vspaceinitstack)

.................. + <- OXFFFFFFFFFFFFFFFF (18 exabytes)

|
Kernel |
|

__________________ + <- KERNBASE = OxFFFFFFFF80000000
|
Unused |
|
__________________ + | <- 2GB (vspace.regions[VR_USTACK].va_base)
|
Stack
|
------------------ + <- vspace.regions[VR_USTACK].va_base - vspace.regions[VR_USTACK].size
|
|
Unused |
|
|
------------------ + <- vspace.regions[VR_HEAP].va_base + vspace.regions[VR_HEAP].size
Heap |
__________________ + <- vspace.regions[VR_HEAP].va_base

|
Text |
|

__________________ + <- vspace.regions[VR_CODE].va_base

Main's Stack

Arg #(argc-1)string

[...]
Arg #1 string

Arg #0 string

argv[argc - 1]

[...]

arsi
argv[0]
Return PC

Since argv is an array
of pointers, %RSI
points to an array on
the stack

Since each element of
argv is a char® each
element pointsto a
string elsewhere on
the stack

Practice Exercise 1

%RSI ”?

%RSP ”?

TODO:

Draw stack layout and
determine register values
for exec called with

“cat cat.txt”

%RSI

Practice Exercise 1: soln

cat.txt\0
cat\0
Argv[2] = NULL
argv[1]
argv[0]
Return PC

RDI holds argc, which
is 2

RSI holds argv: the
beginning of the argv
array

RSP is properly set to
the bottom of the
stack.

The specific value of
the return PC doesn’t
matter (program
exits from main
without returning)

Good luck on Lab 2! .

